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This note shows that a complete (or countably complete) category # which is not
preordered cannot have a two-sided adequate subcategory all of whose hom sets are
finite. The cardinal R, can be replaced by any other measurable cardinal m (that
is, having a non-trivial 2-valued measure that is n-additive for all n <m). Categories
of vector spaces show that such a result holds only for measurable cardinals [2]. By
the way, there are also arbitrarily large categories in which a seven-element monoid
is two-sided adequate [3].

The proof involves compact Hausdorff topologies, or more generally what we
may call m-small topologies: every ultrafilter that is n-multiplicative for all n<m
has a unique limit point. Also we get a stronger result and a more transparent proof
by decomposing adequacy. Recall that a subcategory # is right adequate for an
object X if morphisms 7— X (for all T in the category) correspond bijectively to
natural transformations from Hom(X, -)| # to Hom(Z, - )| # [1]. The equivalence
between global right adequacy and every object X being the limit of the canonical
diagram on objects indexed by | J[Hom(X, B): Be|{#|] (the f-th object being the
codomain of f, the f-th and g-th objects joined by the morphisms 4 & #Z for which
. =g) [4, X. 6.2] localizes to single objects X. We can also remove a redundant
assumption by recalling [1, 9.5.a] that if % is right adequate for certain objects,
notably X", which are right adequate for another object X (any object is adequate
for its retracts), and every morphism X — B factors through X, then # is right
adequate for X. (In [1] # is full, but that doesn’t enter in the proof.)

Theorem. Let m, be a measurable cardinal, and let ¢ be a category having a left
adequate subcategory = and a subcategory # such that Hom(A, B) has less than
mg elements for all A in &/,B in #. Let X be an object of ¢ and m a cardinal not
less than my such that X has an m-th power X™ in ¢ and % is right adequate for
X7, Then X™ is X, i.e., every hom set Hom(C, X) has at most one element.

Proof. The effect of the assumptions involving .« is that ¢ is fully embedded in
Cat( P, &) preserving limits, and each B embeds as an m,-small-set-valued func-
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tor B. Also, to show that every Hom(C, X) has at most one element we need only
prove it for sets Hom(4, X)=X(4), 4 in «.

When 2 is right adequate for Y (as it is for X as well as X™, as we noted), the
sets Y(A) bear my-small topologies as limits of the small sets B(4) with discrete
topology; every natural transformation ¢: ¥—58 (B in #) has continuous com.
ponents ¢4. Also, Y takes morphisms A—A’ to continuous functiong
Y(A")— Y(A). Let p be an ultrafilter on the index set m for the product X™ which
is n-multiplicative for n<mq. Then for each A in «, each m-tuple {x,] in X™(4)
converges along p, in the space X(A), to a unique limit point I7,({x,}). Since X
is continuous-valued, the functions /7, are the components of a natural transfor-
mation I7: X™—X. But if some X(A4) had two different elements u, v, /7, would
take all points that have only finitely many coordinates different from « to u and
their limit point all of whose coordinates are v to v.
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